More Precision

scanCONTROL // 2D/3D laser scanners (laser profile sensors)
High precision laser scanners

The scanCONTROL LLT3000 laser profile scanners impress in 2D/3D measurement tasks with high precision and dynamics. With a high resolution sensor matrix and high profile frequency, the scanners are designed for precise profile measurements in dynamic processes.

- High measurement accuracy and profile frequency
- HDR mode for accurate measurement results on inhomogeneous surfaces
- Compact size and integrated evaluation without external controller or IPC

Laser scanners for industrial series applications

The scanCONTROL 2500 laser scanners are specially designed for industrial measurement tasks. Compact design, versatility and high signal stability result in an excellent price/performance ratio especially for measurement tasks involving large quantities.
Advantages and special features

Laser profile scanners from Micro-Epsilon are among the highest performing profile sensors with respect to accuracy and measuring rate. Equipped with powerful processors and highly sensitive optical components, these scanners ensure precise profile measurements on nearly any type of surface.

While they can be integrated in various environments, the scanners also impress with a compact design which includes an integrated controller.

Direct processing in the integrated controller

The scanCONTROL laser scanners have an integrated controller and therefore do not require any external control unit. This considerably simplifies wiring and the integration into restricted spaces. The available interfaces make it possible to integrate the scanners in industrial environments. For multi-scanner applications, interface modules are available.

Red and Blue Laser

Laser scanners from Micro-Epsilon are available with red and blue laser. For common measurement tasks, scanCONTROL laser scanners with red laser line are used. With objects into which the laser light penetrates, such as transparent or organic surfaces, blue laser scanners are recommended. Blue Laser scanners are also ideal for red-hot glowing metals.

Patent protection

for (semi-)transparent surfaces and red-hot glowing objects

Measurement tasks involving blue laser scanners measuring on red-hot glowing measurement objects exceeding 700 °C and transparent objects such as glass and plastics are protected by patent law. This means that these kinds of measurement are exclusively permitted with Blue Laser scanners from Micro-Epsilon. Any questions about Blue Laser scanners? We will be pleased to advise you.
Advanced Technology

- Compact size and integrated evaluation without external controller or IPC
- High profile resolution for the detection of finest details
- High profile rate for dynamic measurement tasks
- Factory calibration for metals
- Made/Developed in Germany
- Numerous references worldwide
- Proven operational safety in 24/7 operation over many years

Real Time Surface Compensation:

Dynamic adaption to rapidly changing surfaces

Laser profile scanners use diffusely reflected laser light of which the intensity is highly dependent on the color and how shiny and reflective the respective component is. In order to be able to measure reliably under rapidly changing conditions, scanCONTROL sensors offer the Real-Time-Surface-Compensation feature. Due to this smart feature, the exposure time and the threshold of reflection detection are adapted in real time in order to generate stable measurement results. Moreover, the scanCONTROL 3000 series comes with an HDR function which ensures accurate detection of inhomogeneous surfaces.
Universal Application
- Transmission of profiles and measurement values
- 3D data and images for image processing
- Inline measurement of different parameters (gap, step, radius, ...)
- Suitable for robotics & multi-sensor applications

Powerful Software
The scanCONTROL Configuration Tools software offers numerous measuring programs with a total of 94 evaluation variants. This is how all important profile measurement tasks can be set up and combined.
- User-friendly parameter software for all scanCONTROL SMART models
- Analysis and evaluation directly in the sensor

Profile Correction
With obliquely detected profiles, the Configuration Tools software corrects the inclination and therefore simplifies the sensor alignment.

Powerful SDKs
- Libraries for C, C++, C# and VB
- LabVIEW driver
- Linux implementation

Intelligent Tracking
The scanCONTROL SMART sensors can be used to track complex structures and to guide robots. Therefore, anchor points are set in the Configuration Tools software which are used to track and measure the profiles.
Measuring principle

Precise laser scanners for automation, robotics and machine building
The scanCONTROL laser scanners detect, measure and evaluate profiles on various object surfaces with high precision. With different laser types and comprehensive accessories, numerous measurement tasks can be solved in different industries.

The principle of laser line triangulation
Laser scanners – often referred to as profile sensors – use the laser triangulation principle for two-dimensional profile detection on different target surfaces. By using special lenses, a laser beam is enlarged to form a static laser line and is projected onto the target surface. The receiving optics projects the diffusely reflected light of this laser line onto a highly sensitive sensor matrix. In addition to distance information (z-axis), the controller also uses this camera image to calculate the position along the laser line (x-axis). These measured values are subsequently output in a two-dimensional coordinate system that is fixed with respect to the sensor. In the case of moving objects or a traversing sensor, it is therefore possible to obtain 3D measurement values.
All products at a glance

Evaluation by customer
These models provide calibrated profile data which can be further processed on a PC using a customer software evaluation.

LLT25xx
640 points/profile
Profile frequency
Standard up to 300 Hz

scanCONTROL 2500
Page 10 - 11

LLT26xx
640 points/profile
Profile frequency
Standard up to 300 Hz
High speed up to 4000 Hz

scanCONTROL 2600
Page 12 - 13

LLT29xx
1280 points/profile
Profile frequency
Standard up to 300 Hz
High speed up to 2000 Hz
Red laser / Blue laser

scanCONTROL 2900
Page 14 - 15

LLT30xx
2048 points/profile
Profile frequency up to 300 Hz
High speed up to 10,000 Hz
Red laser/Blue Laser

scanCONTROL 3000
Page 20 - 23

Integration: SDK for C/ C++ , LabVIEW-VI and examples for C#, Linux and VB are available.
Page 26 - 29

Integrated evaluation
These models provide selected measurement values. The parameter setup for the sensors and the measurement programs is stored in the internal controller.

scanCONTROL 2510
Page 10 - 11

scanCONTROL 2610
Page 12 - 13

scanCONTROL 2650
Page 12 - 13

scanCONTROL 2660
Page 12 - 13

scanCONTROL 2910
Page 14 - 15

scanCONTROL 2950
Page 14 - 15

scanCONTROL 2960
Page 14 - 15

scanCONTROL 3010
Page 20 - 23

scanCONTROL 3050
Page 20 - 23

scanCONTROL 3060
Page 20 - 23

Evaluation:
scanCONTROL Configuration Tools
Page 24
Red laser scanners are ideally suitable for numerous measurement tasks. Due to higher light intensity and improved performance on poorly reflecting or matt surfaces especially for fast object movements, red laser scanners are perfect for common measurement tasks.
For profile measurements on red-hot glowing metals as well as transparent and organic surfaces, laser scanners with blue laser line are recommended. While allowing higher stability, the blue laser light does not penetrate the measurement object due to the shorter wavelength of the blue-violet laser. Compared to red lasers, blue laser sensors ensure higher reliability with measurements on red-hot glowing, organic and (semi-)transparent objects.

Blue Laser patent protection with red-hot glowing and transparent surfaces

Measurements involving blue laser scanners on red-hot glowing objects exceeding 700 °C and (semi-)transparent objects are protected by patent law. Transparent objects include plastics, glass, adhesives, silicones, paints, coatings, Plexiglas and seals. Any questions about Blue Laser scanners? We will be pleased to advise you.
Sensor for series applications

ScanCONTROL 25xx laser scanners are designed for industrial measurement tasks. The combination of compact design, versatility and signal stability enables an excellent price/performance ratio, especially for measurement tasks involving large quantities.

COMPACT and SMART performance classes for automation

The COMPACT sensors (scanCONTROL 2500) are integrated in the customer software to transmit the raw profiles. Therefore, numerous libraries including detailed documentation are available. In addition, direct integration into industrial image processing systems is possible since the sensors operate according to the international GigE Vision standard which enables individual integration of the scanners.

The SMART sensors (scanCONTROL 2510) are parameterized via the scanCONTROL Configuration Tools software and deliver direct measurement results without requiring any additional computer or controller. The sensor autonomously executes up to 4 measuring programs in parallel while delivering 4 measurement results per profile.

The scanCONTROL 2510 scanners are suitable for versatile profile measurement tasks. They measure and evaluate angles, steps, gaps, distances, extreme values and many more.

Comprehensive accessories for numerous measurement tasks

With three measuring ranges and comprehensive accessories including protective housings, cable types and interface converters, the scanCONTROL 25xx models are ideal for series integration in production lines and machine building.

Article designation

<table>
<thead>
<tr>
<th>LLT</th>
<th>25</th>
<th>00</th>
<th>-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>00=COMPACT</td>
</tr>
<tr>
<td>10=SMART</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLT25xx</td>
</tr>
</tbody>
</table>

No options available for scanCONTROL 25xx.
Technical Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start of measuring range</td>
<td>Mid of measuring range</td>
<td>End of measuring range</td>
</tr>
<tr>
<td>Z-axis</td>
<td>53.5 mm</td>
<td>66 mm</td>
<td>78.5 mm</td>
</tr>
<tr>
<td>Standard measuring range</td>
<td>66 mm</td>
<td>96 mm</td>
<td>120 mm</td>
</tr>
<tr>
<td>Height of measuring range</td>
<td>25 mm</td>
<td>50 mm</td>
<td>100 mm</td>
</tr>
<tr>
<td>Extended measuring range</td>
<td>53 mm</td>
<td>66 mm</td>
<td>125 mm</td>
</tr>
<tr>
<td>End of measuring range</td>
<td>79 mm</td>
<td>125 mm</td>
<td>390 mm</td>
</tr>
<tr>
<td>Linearity</td>
<td>±0.10 % FSO</td>
<td>±0.10 % FSO</td>
<td>±0.13 % FSO</td>
</tr>
<tr>
<td>Reference resolution</td>
<td>2 μm</td>
<td>4 μm</td>
<td>12 μm</td>
</tr>
<tr>
<td>X-axis</td>
<td>23.4 mm</td>
<td>42 mm</td>
<td>83.1 mm</td>
</tr>
<tr>
<td>Standard measuring range</td>
<td>25 mm</td>
<td>50 mm</td>
<td>100 mm</td>
</tr>
<tr>
<td>End of measuring range</td>
<td>29.1 mm</td>
<td>58 mm</td>
<td>120.8 mm</td>
</tr>
<tr>
<td>Extended measuring range</td>
<td>23.2 mm</td>
<td>40 mm</td>
<td>58.5 mm</td>
</tr>
<tr>
<td>End of measuring range</td>
<td>29.3 mm</td>
<td>60 mm</td>
<td>143.5 mm</td>
</tr>
<tr>
<td>Resolution (x-axis)</td>
<td>640 points/profile</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interfaces

<table>
<thead>
<tr>
<th></th>
<th>Ethernet GigE Vision</th>
<th>Digital inputs</th>
<th>RS422 (half-duplex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interfaces</td>
<td>Output of measurement values</td>
<td>Mode switching</td>
<td>Output of measurement values</td>
</tr>
<tr>
<td>Multi-function port</td>
<td>Sensor control</td>
<td>Encoder (counter)</td>
<td>Sensor control</td>
</tr>
<tr>
<td>Interfaces</td>
<td>Profile data transmission</td>
<td>Trigger</td>
<td>Trigger</td>
</tr>
<tr>
<td>Interfaces</td>
<td>Synchronization</td>
<td></td>
<td>Synchronization</td>
</tr>
</tbody>
</table>

Output of measurement values

- Ethernet (UDP / Modbus TCP); RS422 (ASCII / Modbus RTU)
- PROFIBUS; EtherCAT; EtherNet/IP
- analog; switch signal

Display (LED)

- 1x laser ON/OFF, 1x power/error/status

Light source

- Semiconductor laser 658 nm (red)

Aperture angle of laser line

- 20°, 25°, 25°

Laser power

- ≤ 8 mW (laser class 2M)

Laser switch-off

- via software

Permissible ambient light (fluorescent light)

- 10,000 lx

Protection class (sensor)

- IP65

EMC requirements

- according to: EN 61326-1: 2006-10
- EN 61000-6-2: 2006-03
- DIN EN 55011: 2007-11 (group 1, B class)
- Vibration: 2 g / 20 ... 500 Hz
- Shock: 15 g / 6 ms
- Operating temperature: 0 ... +45 °C
- Storage temperature: -20 ... +70 °C
- Dimensions: 96 x 85 x 33 mm
- Sensor weight (without cable): 380 g
- Supply: 11 … 30 VDC, nominal value 24 V, 500 mA, IEEE 802.3af class 2, Power over Ethernet

1) Measuring range (standard)
2) Measurement object: Micro-Epsilon standard object (metallic, diffusely reflecting material)
3) According to a one-time averaging across the measuring field (640 points)
4) RS422 interface, programmable either as serial interface or as input for triggering/synchronization
5) Only with Output Unit
6) Only with scanCONTROL Gateway
7) FSO = Full Scale Output
Compact design for all measurement tasks
The design of the LLT 26xx series is focused on compact size and low weight. The controller is integrated in the housing, simplifying cabling arrangements and mechanical integration. Due to its compact design and the profile frequency of up to 4000 profiles/sec., the 26xx series is especially suitable for dynamic and robotic applications.

Interfaces for universal integration
The multi-function port can be used for power supply, as data output, for switching parameters, as trigger input or for synchronizing several scanCONTROL sensors. During synchronous operation, an integrated mode can be used to operate the sensors alternately compensating for overlapping laser lines. One scanner is measuring whilst the other laser line is switched off.

The scanners can be supplied via Ethernet if necessary. If Industrial Ethernet is used as data output, only one cable will remain that connects the sensor to the periphery.

For all SMART sensors, the measurement data output can be carried out in three different ways, e.g., via Ethernet UDP, Modbus TCP or serial. Micro-Epsilon converters enable data transmission via analog signals, digital switching signals, PROFINET, Ethernet/IP or EtherCAT.

Article designation

<table>
<thead>
<tr>
<th>Article designation</th>
<th>LLT 26 00-25</th>
<th>/SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring range</td>
<td>25 mm</td>
<td>50 mm</td>
</tr>
<tr>
<td></td>
<td>100 mm</td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>00=COMPACT</td>
<td>10=SMART</td>
</tr>
<tr>
<td></td>
<td>50=HIGHSPEED</td>
<td>60=HIGHSPEED SMART</td>
</tr>
<tr>
<td>Series</td>
<td>LLT26xx</td>
<td></td>
</tr>
</tbody>
</table>

Laser options*

<table>
<thead>
<tr>
<th>Laser options*</th>
<th>/SI</th>
<th>/3B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hardware switch-off of the laser line</td>
<td>Improved laser power (class 3B, ≤20 mW), e.g., for dark surfaces</td>
</tr>
</tbody>
</table>

Cable output options*

<table>
<thead>
<tr>
<th>Cable output options*</th>
<th>/PT</th>
<th>/VT</th>
<th>/ST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cable directly out of the sensor (Pigtail) Length 0.25 m</td>
<td>Cable directly out of the sensor (Variable Tail) Length 0.1 ... 1.0 m (freely selectable)</td>
<td>1 cable directly out of the sensor (Single Tail) multi-function port is omitted, Length 0.1 ... 1.0 m (freely selectable)</td>
</tr>
</tbody>
</table>

*Options can be combined
Technical Data

<table>
<thead>
<tr>
<th>Model</th>
<th>LLT26xx-25</th>
<th>LLT26xx-50</th>
<th>LLT26xx-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard measuring range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start of measuring range</td>
<td>53.5 mm</td>
<td>70 mm</td>
<td>190 mm</td>
</tr>
<tr>
<td>Mid of measuring range</td>
<td>66 mm</td>
<td>95 mm</td>
<td>240 mm</td>
</tr>
<tr>
<td>End of measuring range</td>
<td>78.5 mm</td>
<td>120 mm</td>
<td>290 mm</td>
</tr>
<tr>
<td>Height of measuring range</td>
<td>25 mm</td>
<td>50 mm</td>
<td>100 mm</td>
</tr>
<tr>
<td>Extended measuring range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start of measuring range</td>
<td>53 mm</td>
<td>65 mm</td>
<td>125 mm</td>
</tr>
<tr>
<td>End of measuring range</td>
<td>79 mm</td>
<td>125 mm</td>
<td>390 mm</td>
</tr>
<tr>
<td>Linearity (2 sigma)</td>
<td>±0.10 % FSO</td>
<td>±0.10 % FSO</td>
<td>±0.13 % FSO</td>
</tr>
<tr>
<td>Reference resolution</td>
<td>2 µm</td>
<td>4 µm</td>
<td>12 µm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>LLT26xx-25</th>
<th>LLT26xx-50</th>
<th>LLT26xx-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard measuring range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start of measuring range</td>
<td>23.4 mm</td>
<td>42 mm</td>
<td>83.1 mm</td>
</tr>
<tr>
<td>Mid of measuring range</td>
<td>25 mm</td>
<td>50 mm</td>
<td>100 mm</td>
</tr>
<tr>
<td>End of measuring range</td>
<td>29.1 mm</td>
<td>58 mm</td>
<td>120.8 mm</td>
</tr>
<tr>
<td>Extended measuring range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start of measuring range</td>
<td>23.2 mm</td>
<td>40 mm</td>
<td>58.5 mm</td>
</tr>
<tr>
<td>End of measuring range</td>
<td>29.3 mm</td>
<td>60 mm</td>
<td>143.5 mm</td>
</tr>
<tr>
<td>Resolution (x-axis)</td>
<td>640 points/profile</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Profile frequency

- Standard: up to 300 Hz
- HIGHSPEED: up to 4,000 Hz

Interfaces

- Ethernet GigE Vision: Output of measurement values, Sensor control, Profile data transmission
- Multi-function Port: Mode switching, Encoder (counter), Trigger
- RS422 (half-duplex): Output of measurement values, Sensor control, Trigger, Synchronization

Output of measurement values

- Ethernet (UDP / Modbus TCP), RS422 (ASCII / Modbus RTU), analog, switch signal
- PROFINET, EtherCAT, EtherNet/IP

Display (LED)

- 1x Laser ON/OFF, 1x power/error/status

Light source

- Semiconductor laser 658 nm (red)

Aperture angle of laser line

- Standard: 20°
- Optional: 25°

Laser power

- Standard: ≤ 8 mW (laser class 2M)
- Optional: ≤ 20 mW (laser class 3B)

Laser switch-off

- Optional: Hardware safety switch-off

Permissible ambient light (fluorescent light)

- Standard: 10,000 lx

Protection class (sensor)

- IP65

EMC requirements

- according to: EN 61326-1: 2006-10
- DIN EN 55011: 2007-11 (group 1, B class)
- EN 61000-6-2: 2006-03

Vibration

- 2 g / 20 ... 500 Hz

Shock

- 15 g / 6 ms

Operating temperature

- 0 ... +45 °C

Storage temperature

- -20 ... +70 °C

Dimensions

- 96 x 85 x 33 mm

Sensor weight (without cable)

- 380 g

Supply

- 11 ... 30 VDC, nominal value 24 V, 500 mA, IEEE 802.3af class 2, Power over Ethernet

1) Measuring range (standard)
2) Measurement object: Micro-Epsilon standard object (metallic, diffusely reflecting material)
3) According to a one-time averaging across the measuring field (640 points)
4) RS422 interface, programmable either as serial interface or as input for triggering/synchronization
5) Only with Output Unit
6) Only with scanCONTROL Gateway

FSO = Full Scale Output
Compact design for precise measurement tasks
The design of the LLT 29xx series is focused on compact size and low weight. The controller is integrated in the housing, simplifying cabling arrangements and mechanical integration. Due to its compact design and the high profile resolution, the LLT29xx series is especially suitable for static, dynamic and robotic applications.

Interfaces for universal integration
The multi-function port can be used for power supply, as data output, for switching parameters, as trigger input or for synchronizing several scanCONTROL sensors. During synchronous operation, an integrated mode can be used to operate the sensors alternately compensating for overlapping laser lines. One scanner is measuring whilst the other laser line is switched off. The scanners can be supplied via Ethernet if necessary. If Industrial Ethernet is used as data output, only one cable will remain that connects the sensor to the periphery.

For all SMART sensors, the measurement data output can be carried out in three different ways, e.g., via Ethernet UDP, Modbus TCP or serial. Micro-Epsilon converters enable data transmission via analog signals, digital switching signals, PROFINET, Ethernet/IP or EtherCAT.

Small measuring range with high resolution
With a laser line of just 10 mm, the LLT29xx-10/BL models recognize the finest of details and structures. The high profile resolution combined with the blue laser line allow for maximum precision destined for versatile applications, e.g., in the electronics production.

Available with patented Blue Laser Technology
The Blue Laser technology uses a laser diode with a shorter wavelength of 405 nm. The outstanding characteristics of this wavelength range enable measurements on red-hot glowing metals, (semi-)transparent and organic objects.

Article designation
<table>
<thead>
<tr>
<th>LLT</th>
<th>29</th>
<th>00</th>
<th>-25</th>
<th>/SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options - see below</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mm (only Blue Laser)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Class
| 00=COMPACT |
| 10=SMART |
| 50=HIGHSPEED |
| 60=HIGHSPEED SMART |

Series
LLT29xx

Laser options*
/SI	Hardware switch-off of the laser line
/3B	Improved laser power (class 3B, ≤ 20 mW), e.g., for dark surfaces
/BL	Blue laser line (405 nm) for (semi-) transparent, red-hot glowing and organic materials

Cable output options*
/PT	Cable directly out of the sensor ("Pigtail") Length 0.25 m
/VT	Cable directly out of the sensor ("Variable Tail") Length 0.1 ... 1.0 m (freely selectable)
/ST	1 cable directly out of the sensor ("Single Tail") multi-function port is omitted, Length 0.1 ... 1.0 m (freely selectable)

*Options can be combined
Technical Data

Z-axis (Height)

<table>
<thead>
<tr>
<th>Model</th>
<th>LLT 29xx-10/BL</th>
<th>29xx-25</th>
<th>29xx-50</th>
<th>29xx-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of measuring range</td>
<td>52.5 mm</td>
<td>53.5 mm</td>
<td>70 mm</td>
<td>190 mm</td>
</tr>
<tr>
<td>Mid of measuring range</td>
<td>56.5 mm</td>
<td>66 mm</td>
<td>95 mm</td>
<td>240 mm</td>
</tr>
<tr>
<td>End of measuring range</td>
<td>60.5 mm</td>
<td>78.5 mm</td>
<td>120 mm</td>
<td>290 mm</td>
</tr>
<tr>
<td>Height of measuring range</td>
<td>8 mm</td>
<td>25 mm</td>
<td>50 mm</td>
<td>100 mm</td>
</tr>
</tbody>
</table>

Extended measuring range

| Start of measuring range | - | 53 mm | 65 mm | 125 mm |
| End of measuring range | - | 79 mm | 125 mm | 390 mm |

Linearity

| (2 sigma) | ±0.17 % FSO | ±0.10 % FSO | ±0.10 % FSO | ±0.10 % FSO |

Reference resolution

| 1 µm | 2 µm | 4 µm | 12 µm |

X-axis (Width)

<table>
<thead>
<tr>
<th>Model</th>
<th>LLT 29xx-10/BL</th>
<th>29xx-25</th>
<th>29xx-50</th>
<th>29xx-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of measuring range</td>
<td>9.4 mm</td>
<td>23.4 mm</td>
<td>42 mm</td>
<td>83.1 mm</td>
</tr>
<tr>
<td>Mid of measuring range</td>
<td>10 mm</td>
<td>25 mm</td>
<td>50 mm</td>
<td>100 mm</td>
</tr>
<tr>
<td>End of measuring range</td>
<td>10.7 mm</td>
<td>29.1 mm</td>
<td>58 mm</td>
<td>120.8 mm</td>
</tr>
</tbody>
</table>

Extended measuring range

| Start of measuring range | - | 23.2 mm | 40 mm | 58.5 mm |
| End of measuring range | - | 29.3 mm | 60 mm | 143.5 mm |

Resolution (x-axis)

1,280 points/profile

Profile frequency

- Standard: up to 300 Hz
- HIGHSPEED: up to 2,000 Hz

Interfaces

- **Ethernet GigE Vision**
- **Multi-function port**
 - Digital inputs
 - RS422 (half-duplex) 4)

Output of measurement values

- Ethernet (UDP / Modbus TCP); RS422 (ASCII / Modbus RTU)
- analog 4; switch signal 5)
- PROFINET 6; EtherCAT 6; EtherNet/IP 6)

Display (LED)

- 1x laser ON/OFF, 1x power/error/status

Light source

- Standard: Semiconductor laser 405 nm (blue)
- optional: Semiconductor laser 658 nm (red)
- optional: Semiconductor laser 405 nm (blue)

Aperture angle of laser line

- Standard: 10°
- optional: 20°
- 25°
- 25°

Laser power

- Standard: ≤ 8 mW (laser class 2M)
- optional: ≤ 20 mW (laser class 3B)

Laser switch-off

- optional: Hardware safety switch-off

Permissible ambient light (fluorescent light) 8)

- 10,000 lx

Protection class (sensor)

- IP65

EMC requirements

- According to: EN 61326-1: 2006-10
- DIN EN 55011: 2007-11 (group 1, B class)
- EN 61000-6-2: 2006-03

Vibration

- 2 g / 20 ... 500 Hz

Shock

- 15 g / 6 ms

Operating temperature

- 0 °C ... +45 °C

Storage temperature

- -20 °C ... +70 °C

Dimensions

- 96 x 118.5 x 33 mm
- 96 x 85 x 33 mm

Sensor weight (without cable)

- 440 g
- 380 g

Supply

- 11 ... 30 VDC, nominal value 24 V, 500 mA, IEEE 802.3af class 2, Power over Ethernet

1) Measuring range (standard)
2) Measurement object: Micro-Epsilon standard object (metallic, diffusely reflecting material)
3) According to a one-time averaging across the measuring field (640 points)
4) RS422 interface, programmable either as serial interface or as input for triggering/synchronization
5) Only with Output Unit
6) Only with scanCONTROL Gateway

FSO = Full Scale Output
Dimensions and measuring range

LLT29x0-10/BL

Recommended attachment point

Recommended attachment point

MS 10 5.5 x 90° (on both sides)

SMR = Offset distance

MMR = Reference distance

EMR
LLT25x0/LLT26x0/29x0-25

Recommended attachment point

Standard range

Extended range

MR ext. >= 53
53.5 SMR
66 MMR
78.5 EMR
MR ext. <= 79
89
96
Dimensions and measuring range for LLT25x0/LLT26x0/29x0-50

Recommended attachment point

MR ext. >= 65
70 SMR
95 MMR
120 EMR

MR ext. <= 125

Standard range
Extended range

Recommended attachment point

27.5° - 30°

+0.1

M5 ≥ 10
Ø 5.2 x 89°
LLT25x0/LLT26x0/29x0-100

Recommended attachment point

M5 ≥ 10
min. 5.2 x 90°

4.1

+0.1

3

H7

75.5
79
73.5

85.75
89

56.1

27.5

MR ext. ≥ 125

190 SMR

240 MMR

290 EMR

MR ext. ≤ 390

71.5
75.5

58.5

83.1

100

129.8

143.5

(21.4°)

standard range

extended range

Recommended attachment point
Fast and precise 2D/3D profile measurements
The latest LLT30xx laser profile scanners provide calibrated 2D profile data with up to 5.5 million points per second. Enabling profile frequency of 10 kHz, the HIGHSPEED models are used for monitoring tasks in dynamic processes. The high-resolution sensor matrix with 2,048 points achieves a point distance of just 12 µm (LLT30xx-25).

Available with patented Blue Laser Technology
The scanCONTROL 30xx/BL laser profile scanners are equipped with a blue-violet laser diode. Particularly with semi-transparent measurement objects, the blue laser offers high signal stability.

The easy way of machine integration
The design of the LLT30xx series is compact and lightweight. The controller is integrated in the sensor itself, which simplifies mechanical integration. Numerous interfaces such as digital switch signals, Ethernet, PROFINET, EtherNet/IP or EtherCAT allow for measured data to be output directly.

Innovative exposure control to master difficult surfaces
On inhomogeneous or dark surfaces, the HDR (High Dynamic Range) data acquisition mode and the improved auto exposure optimizes the measurement results. In HDR mode, the rows of the sensor matrix are exposed differently but at the same time which avoids time offsets between the recordings. This is how moving objects can be detected reliably. The auto exposure feature enables to individually select the areas to be exposed.

Top performances with selectable operating modes
Choose from three predefined operating modes for your specific measurement task: "High-Resolution" for maximum precision, "High Dynamic Range" for optimal profile detection on difficult surfaces and "High Speed" for ultra-fast measurements.
Z-axis

<table>
<thead>
<tr>
<th>Model</th>
<th>LLT30xx-25</th>
<th>LLT30xx-25/BL</th>
<th>LLT 30xx-50</th>
<th>LLT 30xx-50/BL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of measuring range</td>
<td>77.5 mm</td>
<td>105 mm</td>
<td>77.5 mm</td>
<td>105 mm</td>
</tr>
<tr>
<td>Mid of measuring range</td>
<td>85 mm</td>
<td>125 mm</td>
<td>92.5 mm</td>
<td>145 mm</td>
</tr>
<tr>
<td>End of measuring range</td>
<td>92.5 mm</td>
<td>145 mm</td>
<td>92.5 mm</td>
<td>145 mm</td>
</tr>
<tr>
<td>Height of measuring range</td>
<td>15 mm</td>
<td>40 mm</td>
<td>15 mm</td>
<td>40 mm</td>
</tr>
<tr>
<td>Linearity (2 sigma)</td>
<td>±0.08 % FSO</td>
<td>±0.06 % FSO</td>
<td>±0.08 % FSO</td>
<td>±0.06 % FSO</td>
</tr>
<tr>
<td>Reference resolution</td>
<td>1.5 µm</td>
<td>3 µm</td>
<td>1.5 µm</td>
<td>3 µm</td>
</tr>
</tbody>
</table>

X-axis

<table>
<thead>
<tr>
<th>Model</th>
<th>LLT30xx-25</th>
<th>LLT30xx-25/BL</th>
<th>LLT 30xx-50</th>
<th>LLT 30xx-50/BL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start of measuring range</td>
<td>22.9 mm</td>
<td>43 mm</td>
<td>22.9 mm</td>
<td>43 mm</td>
</tr>
<tr>
<td>Mid of measuring range</td>
<td>25 mm</td>
<td>50 mm</td>
<td>25 mm</td>
<td>50 mm</td>
</tr>
<tr>
<td>End of measuring range</td>
<td>26.8 mm</td>
<td>55.9 mm</td>
<td>26.8 mm</td>
<td>55.9 mm</td>
</tr>
</tbody>
</table>

Technical Data

- **Ethernet GigE Vision**: Output of measurement values, Sensor control, Profile data transmission
- **Digital inputs**: Mode switching, Encoder (counter), Trigger
- **RS422 (half-duplex)**: Output of measurement values, Sensor control, Trigger, Synchronization
- **Output of measurement values**: Ethernet (UDP / Modbus TCP), RS422 (ASCII / Modbus RTU), analog, switch signal, PROFINET, EtherCAT, EtherNet/IP
- **Display (LED)**: 1 x Laser ON/OFF, 1 x Data, 1 x Error
- **Light source**: Semiconductor laser 658 nm (red), Semiconductor laser 405 nm (blue)
- **Aperture angle of laser line**: 23°, 28°
- **Laser power**: Standard: ≤ 10 mW (laser class 2M)
- **Laser switch-off**: via software, hardware switch-off with /Si option
- **Permissible ambient light (fluorescent light)**: 10,000 lx
- **Protection class (sensor)**: IP67 (when connected)
- **EMC requirements**: according to DIN EN 61000-6-2: 2005, DIN EN61000-6-3: 2007, DIN EN61326-1:2013 and DIN EN50581:2012
- **Vibration**: 2 g / 20 … 500 Hz
- **Shock**: 15 g / 6 ms
- **Operating temperature**: 0 °C … +45 °C
- **Storage temperature**: -20 °C … +70 °C
- **Dimensions**: 96 x 112 x 40 mm
- **Sensor weight (without cable)**: 415 g
- **Supply**: 11 … 30 VDC, nominal value 24 V, 500 mA, IEEE 802.3af class 2, Power over Ethernet

Notes:
- FSO = Full Scale Output
- Measurement range (standard)
- Measurement object: Micro-Epsilon standard object
- According to a one-time averaging across the measuring field (2,048 points)
- RS422 interface, programmable either as serial interface or as input for triggering/synchronization
- Only with Output Unit
- Only with scanCONTROL Gateway
Dimensions and measuring range

LLT30xx-25
LLT30xx-25/BL
The sensors of the Smart series have an integrated intelligent controller for easy profile evaluation without additional PC. Configuration and parameter setup of the sensor is via the scanCONTROL Configuration Tools software. It helps you to set up the sensor, view profiles, save/load and export profiles. All software functions can also be executed without a sensor in order to test the measurement task offline for very fast processes.

Easy 5-Step Configuration

1. **Alignment of the sensor**
2. **Sensor setting**
3. **Selection of measurement programs**
4. **Configuration of measurement programs**
5. **Output and display of measured values**

The software enables the user to completely configure the scanner in just five simple steps. After configuration, the scanner is in standalone mode and transmits the measured values to a PLC.

Download:

www.micro-epsilon.com/configurationtools
Numerous Setting Options
• 8 measuring programs x 8 evaluations per parameter set
• 15 independent parameter packages can be stored in the sensor
• Unlimited memory for parameter sets on the computer

Wide Range of Measurement Tools

Logical Links
• Combined query of different conditions
• Summarized result evaluation in the sensor as OK/NOK

Full Control over the Sensor State

Active Ring Buffer
Allows, for example, the user to rewind live measurements without previous data recording.
3D visualization for all scanCONTROL models

A third dimension of the measured data is obtained by a relative movement between sensor and target. The y-coordinates are assigned via a trigger or CMM counter.

The scanCONTROL 3D-View software is designed for viewing and exporting this 3D data. In addition, 3D-View also supports the configuration of the sensor.

Different visualization options for better visibility of characteristics:

- Display of profile sequences
- Offline or real-time display of 3D profiles
- Synchronization of the direction of travel (e.g. using an encoder)
- 2D export of the profile sequences (PNG)
- 3D export (asc, stl, csv, ply) for CAD programs
- Intensity per point can be displayed and exported

The software enables the interactive viewing of 3D data and the export of this measurement data to common data formats. Various display modes, views and color palettes help in setting up the sensors and analyzing the profiles. The software supports the online visualization of the profiles as well as offline analysis of stored profile sequences.

Download:

www.micro-epsilon.com/3d-view
Different illumination options to highlight surface structures. With (left) and without illumination (right).

Fitting of a plane to make even the slightest unevenness on multiple-bent components visible.

Different illumination options to highlight surface structures. With (left) and without illumination (right).
The COMPACT and HIGHSPEED sensors detect one profile per measurement from individual, calibrated points. Users can transfer these profiles to their own applications either individually or combined as an array/matrix in a container set. In addition to the data transfer of individual measuring points and their additional information (e.g., intensity, counter reading) the entire configuration of the sensor can also be controlled from its own application software.

Micro-Epsilon provides a number of interfaces to access the parameter and data transfer functions. The transmission interface primarily used by scanCONTROL sensors for communications and profile transfer is Ethernet.

Ethernet and GigE Vision

Each scanCONTROL sensor complies with the GigE Vision Standard (Gigabit Ethernet for Machine Vision) of the AIA (Automated Imaging Association).

The standard is widely used in the image processing industry and is therefore supported by all conventional computer vision tools, ensuring fast and smooth integration into different image processing software packages – also for 3D evaluation.

GigE Vision ensures optimum data security, perfect performance and short design-in times during implementation. GigE Vision is based on Gigabit Ethernet and offers a maximum transfer rate. Ethernet technology offers advantages such as long cable lengths without using repeaters/hubs, and it permits the use of inexpensive network components. The GigE Vision standard provides an open framework for data transmission (e.g., profiles, data sets) and control signals between the laser scanner and a PC. The infrastructure topology provides numerous opportunities for single and multiple scanner applications.
Integration with the C/C++ library
The C/C++ library for scanCONTROL supports both static and dynamic loading. Both stdcall and cdecl are supported as calling conventions. The individual functions of the library are clearly documented in the interface description and explained using examples.

The scanCONTROL SDK integration package includes:
- LLT .DLL library file
- Interfaces and scanCONTROL documentation
- Numerous programming examples for C++, Python, C# and Visual Basic (e.g. trigger, container mode)

The scanCONTROL Developer Tool demo program offers a complete integration example based on C++ for quick testing of the sensor configuration.

Integration with LabVIEW
The LabVIEW scanCONTROL instrument driver supports fast integration of scanCONTROL sensors into the LabVIEW application environment. For accessing a scanCONTROL sensor and its basic settings, users can drag-and-drop modules directly from the function palette into their VIs. Example VIs illustrating the scanCONTROL integration are also part of this package.

The integration of scanCONTROL sensors into the LabVIEW environment is based on the C/C++ library (LLT.DLL) of Micro-Epsilon. Detailed documentation also shows how to set up additional special sensor parameters.

Integration with Linux
The integration into Linux is performed using an Open Source C library which has been extended by some important control features for scanCONTROL. An additional C++ library enables fast sensor integration of the entire functionality into a user-friendly API.

This library is based on the GeniCam standard which is why the sensor can be controlled either via GeniCam commands or directly via the control parameters listed in the documentation. For integration support (e.g. trigger, container mode), also some example programs are available.

Use on ARM embedded PCs (e.g. Raspberry Pi) is possible with restrictions.
Many applications require several scanners, e.g., for contour measurement or when detecting large components. The scanCONTROL Smart PLC Unit is an industrial control unit incl. tailor-made application software for measurement value calculation intended for laser scanners of the scanCONTROL SMART product classes.

Application examples:

Determination of cross-section in the extrusion process

Contour measurement of a land

Profile control (profile width, land width, groove width, groove depth)

The scanned measurement values are evaluated, displayed, recorded and transmitted to higher-level control systems using analog and digital interfaces as well as numerous fieldbus connections (e.g., Profinet, Ethernet IP, EtherCAT, etc.). The modular design of the Smart PLC Unit enables the user to connect up to 8 laser scanners.
scanCONTROL Smart PLC Unit
- Measurement value evaluation of up to 8 laser scanners
- Transmission of measured values to higher-level system control
- Digital and analog IN/OUT
- Integrated web server for display of results
- Numerous possibilities for recording measurement values
PROFINET / EtherCAT / EtherNet/IP – for all SMART scanners

Each scanCONTROL Gateway can be connected with up to 4 sensors.* It communicates with the scanCONTROL SMART sensor via Ethernet Modbus. The resultant values are then converted to PROFINET, EtherCAT or EtherNet/IP. The customer carries out the parameter setup with a detailed instruction manual.

Alternatively, the gateway can also be parameterized in advance at the factory.

* operating more than one sensor requires a switch.

<table>
<thead>
<tr>
<th>Gateway</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6414142</td>
<td>scanCONTROL Gateway II, Fieldbus coupler, configurable for PROFINET, EtherNet/IP and EtherCAT</td>
</tr>
<tr>
<td>6414142.001</td>
<td>scanCONTROL Gateway II, pre-parameterized to customer log and IP addresses</td>
</tr>
<tr>
<td>6411168</td>
<td>scanCONTROL SPU Switch, 5 ports, Industrial Ethernet Switch (unmanaged) for DIN rail, 10/100/1000 Mbit/s, 5 ports</td>
</tr>
<tr>
<td>6411167</td>
<td>scanCONTROL SPU Switch, 8 ports, Industrial Ethernet Switch (unmanaged) for DIN rail, 10/100/1000 Mbit/s, 8 ports</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of sensors on the gateway</th>
<th>Maximum measurement frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500 Hz</td>
</tr>
<tr>
<td>2</td>
<td>500 Hz</td>
</tr>
<tr>
<td>3</td>
<td>330 Hz</td>
</tr>
<tr>
<td>4</td>
<td>250 Hz</td>
</tr>
</tbody>
</table>
Analog signals / digital switch signals - for all SMART scanners

The scanCONTROL Output Unit is addressed via Ethernet and outputs analog and digital signals. Different output terminals can be connected to the fieldbus coupler.

scanCONTROL Output Unit

- **Output Unit Basic/ET Fieldbus coupler with filter module and bus end terminal**
- **8-channel digital output terminal; DC 24 V; 0.5 A; negative switching**
- **8-channel digital output terminal; DC 24 V; 0.5 A; positive switching**
- **4-channel analog output terminal; ±10 V**
- **4-channel analog output terminal; 0-10 V**
- **4-channel analog output terminal; 0-20 mA**
- **4-channel analog output terminal; 4-20 mA**

Other terminals available on request.

Accessories

scanCONTROL

33
Connection cable

Multi-function cable
For power supply, digital inputs (TTL or HTL), RS422 (half-duplex)

<table>
<thead>
<tr>
<th>PC</th>
<th>2600/2900-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor type (also suitable for LLT25x0 / 30x0)</td>
<td></td>
</tr>
</tbody>
</table>

Ethernet connection cable
For parameter setup, value and profile transmission

<table>
<thead>
<tr>
<th>SC</th>
<th>2600/2900-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor type (also suitable for LLT25x0 / 30x0)</td>
<td></td>
</tr>
</tbody>
</table>

PC = Multi-function cable qualified for drag chain use
PCR = Multi-function cable suitable for use with robots

SC = Ethernet connection cable qualified for drag chain use
SCR = Ethernet connection cable suitable for use with robots

Accessories

<table>
<thead>
<tr>
<th>Art. no.</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0323478</td>
<td>Connector/12-pin/Multifunction for LLT25/26/29/30 series</td>
<td>Plug for multifunction port</td>
</tr>
<tr>
<td>0323479</td>
<td>Connector/8-pin/Ethernet for LLT25/26/29/30 series</td>
<td>Plug for Ethernet socket</td>
</tr>
<tr>
<td>2420067</td>
<td>PS25/26/29/30</td>
<td>Power supply unit for scanCONTROL</td>
</tr>
<tr>
<td>0254111</td>
<td>Case for LLT25/26/29/30 series</td>
<td>Transport case for scanCONTROL sensors incl. measuring stand</td>
</tr>
<tr>
<td>2960097</td>
<td>Measuring stand for LLT26/29/30</td>
<td>Measuring stand with sensor adapter board, flexible rod and clamp base</td>
</tr>
</tbody>
</table>
Protection and cooling housing for LLT25xx, LLT26xx and 29xx

(Not available for scanCONTROL 29xx-10/BL)

Protection housing with blow-out system

<table>
<thead>
<tr>
<th>Art. no.</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2105058</td>
<td>Protection housing for LLT25/26/29 series</td>
<td>Adaptive protection housing for LLT25xx/26xx/29xx</td>
</tr>
<tr>
<td>2105059</td>
<td>Protective cooling housing for LLT25/26/29 series</td>
<td>Adaptive protection and cooling housing for LLT25xx/26xx/29xx</td>
</tr>
<tr>
<td>0755075</td>
<td>Exchangeable glass of protection housing for LLT25/26/29</td>
<td>Exchangeable glass for protection/cooling concept LLT25/26/29, 50 pcs.</td>
</tr>
</tbody>
</table>

Protection housing with blow-out system and water cooling

- 3x mounting holes M4
- Connection for air purge
- Exchangeable protective glass
- Adjustable splash guard
- Connection for liquid cooling
Sensors and Systems from Micro-Epsilon

- Sensors and systems for displacement, distance and position
- Sensors and measurement devices for non-contact temperature measurement
- Measuring and inspection systems for metal strips, plastics and rubber
- Optical micrometers and fiber optics, measuring and test amplifiers
- Color recognition sensors, LED analyzers and inline color spectrometers
- 3D measurement technology for dimensional testing and surface inspection